
Incompressible Navier-Stokes with Particles Baseline

Performance Measurement

P. Colella
D. F. Martin
N. D. Keen

Applied Numerical Algorithms Group
NERSC Division

Lawrence Berkeley National Laboratory
Berkeley, CA

June 25, 2004

Benchmark Problem Description

The algorithm is described in a separate document entitled ”Incompressible Navier-Stokes
with Particles Algorithm Design Document” [1].

To evaluate the performance of the incompressible Navier-Stokes with particles code,
we use a background flow of a single vortex ring in three dimensions in a 1m3 box. For this
problem, the vorticity distribution is specified, and the initial velocity is then computed
based on the initial vorticity field. The vortex ring is specified by a location of the center
of the vortex ring (x0, y0, z0), the radius of the center of the local cross-section of the
ring from the center of the vortex ring r, and the strength of the vortex ring Γ.

The cross-sectional vorticity distribution in the vortex ring is given by

ω(ρ) =
Γ

aσ2
e(ρ

σ
)3 (1)

where ρ is the local distance from the center of the ring cross-section, a = 2268.85, and
σ = 2.75. For this problem, the vortex ring is centered at (50, 50, 40), with a radius of 2,
and strength Γ of 1.5× 105

Particles are then added with stationary initial conditions on the z = 50cm plane,
distributed evenly in 25 < x, y < 75. The particle properties are designed to simulate
a particle with twice the density of the ambient fluid (water), a diameter of 1mm, and
which follow the laminar drag rule CD = 24

Re
. [2]

This document presents serial profiling and parallel performance results for a given set
of inputs to the incompressible Navier-Stokes code. The inputs file for the 32× 32× 32
900-particle benchmark run is shown in Figure 1.

Target Platform and Compilers

The target platform for this benchmark measurement is a machine named Seaborg located
at NERSC. Seaborg is an IBM SP RS/6000 System and it currently consists of 6,080
processors. Each processor is a POWER3 chip with a clock speed of 375 MHz and peak
performance of 1.5 Gflops. The Seaborg processors are clustered into 380 symmetric
multiprocessor nodes (16 processors per node). Seaborg is a hybrid system in the sense
that memory is distributed among nodes, but within a node memory is shared.

The Fortran compiler used for this was the AIX Fortran compiler xlf version 8.1.1.5
with the flags set to be -O3 -qarch=auto -qmaxmem=99999 -qhot -qstrict. The
C++ compiler used was the AIX C++ compiler xlC version 6.0.0.7 with flags as -O3

-qstrict -qarch=auto -qstaticinline.

Profiling Methodology

The primary metric used in this performance analysis work is wall-clock time of various
units and sections of the code. The standard C function gettimeofday() is used to

1

#inputs file for 32x32x32 900-particle test case, 4 timesteps

main.max_step = 4 #max number of timesteps to computAe

main.max_time = 5.0 #stop time

main.num_cells = 32 32 32 #base level domain

main.max_level = 0

main.ref_ratio = 4

main.regrid_interval = 100000 10000

main.block_factor = 8

main.max_grid_size = 32

main.checkpoint_interval = -1

main.plot_interval = -1

main.cfl = 0.5

main.particleCFL = 0.1

main.fixed_dt = 0.012

main.is_periodic = 0 0 0

#Note that we’re in CGS units here, so 1m = 100 cm

ns.domainLength = 100.0 100.0 100.0

ns.init_shrink = 0.1

ns.project_initial_vel = 1

ns.init_pressures = 1

ns.num_init_passes = 1

ns.specifyInitialGrids = 0

ns.initVelFromVorticity = 1

ns.backgroundVelocity = 0.0

ns.viscosity = 0.0040

ns.num_scalars = 0

ns.scal_diffusion_coeffs = 0.00 0.0

#particle stuff

ns.particle_epsilon = 6.25

ns.particle_drag_coeff = 0.04

ns.particle_body_force = 0 0 0

#if 1, use image particles to help enforce BC’s

ns.use_image_particles = 1

input initial particle positions from a file

ns.read_particles_from_file = 1

ns.particle_file = particles.900p.dat

this is physical BC info

0 = solidWall, 1=inflow, 2=outflow, 3=symmetry, 4=noShear

physBC.lo = 4 4 4

physBC.hi = 4 4 4

physBC.maxInflowVel = 1.0

Figure 1: Inputs file for 32× 32× 32 900-particle benchmark problem.

2

obtain the wall-clock time. This method is robust and has a resolution of approximately
one microsecond on the target machine. The execution or run time is the measured wall-
clock time to compute 4 timesteps and does not include setup overhead or I/O at the
end of the run. We also report memory usage for the code obtained using the getrusage
system call, which retrieves information about resources used by the current process such
as the maximum resident set size.

Serial Performance

Table 1 shows serial performance for the particle code with 0, 1, 9, 100, 900, and 10,000
particles on a 128× 128× 128 domain for 4 timesteps. These runs were performed using
the parallel code, but with only one active processor. A true serial run would yield similar
results, but without the small overhead in time and memory caused by MPI.

Domain number of memory execution
Size particles usage (MB) time (s)

128x128x128 0 1184 677
128x128x128 1 1192 1233
128x128x128 9 1192 1236
128x128x128 100 1192 1257
128x128x128 900 1193 1362
128x128x128 10000 1213 2658

Table 1: Serial performance of particle code for 128× 128× 128 domain, 4 timesteps.

Parallel Performance

To measure the parallel performance of the code, the benchmark problem was run using
1, 2, 4, 8, 16, and 32 processors. Tables 2 and 3 show execution times and memory usage
for the 128 × 128 × 128 case with 0, 900, and 10,000 particles for varying numbers of
processors.

It should be noted that in the current implementation of the code, the infinite-domain
elliptic solver operates by copying all of the particles over to a single processor and then
doing the infinite domain solve on that single processor for the entire domain. So, this part
of the algorithm represents a bottleneck in parallel at the moment, both for computational
time and for memory usage. We expect that fixing this implementation issue will result
in better parallel performance.

Another way to evaluate the performance of the code is to run the same problem with
different grid sizes. To this end, we run the 900 particle test case with 323, 643, and 1283

3

number of 0 1 900 10000
processors particles particle particles particles

1 677 1233 1362 2658
2 338 925 1025 2297
4 177 742 841 2127
8 88 642 756 2040
16 50 611 729 2001

Table 2: Execution time in seconds of particle code for 128 × 128 × 128 domain, 4
timesteps.

number of 0 p avg 1 p avg 900 p avg 10000 p avg
processors (min-max) (min-max) (min-max) (min-max)

1 1184 1192 1193 1213
2 632 (632-633) 742 (639-845) 743 (640-846) 755 (654-857)
4 356 (346-366) 445 (349-686) 445 (350-687) 453 (352-696)
8 203 (198-208) 255 (201-591) 255 (200-592) 261 (202-613)
16 127 (121-133) 154 (123-543) 155 (123-544) 158 (124-557)

Table 3: Memory usage in MB for particle code for 128× 128× 128 domain, 4 timesteps.

computational domains. The execution times and memory usages for this problem are
shown in Tables 4 and 5.

number of 323 643 1283

processors
1 51 221 1362
4 51 155 1025
8 51 144 841
16 52 145 756

Table 4: Parallel execution time in seconds for particle code for 900 particle test case, 4
timesteps.

4

number of 323 643 1283

processors avg (min-max) avg (min-max) avg (min-max)
1 59 186 1193
4 30 (21-59) 83 (81-89) 445 (350-687)
8 26 (21-59) 63 (61-77) 255 (200-592)
16 23 (21-59) 42 (21-77) 155 (123-544)

Table 5: Memory usage in MB of particle code for 900 particle test case, 4 timesteps.

5

Bibliography

[1] Dan Martin and Phil Colella. Incompressible Navier-Stokes with particles design doc-
ument. Technical report, Applied Numerical Algorithms Group, Lawrence Berkeley
Laboratory, 2003.

[2] Frank M. White. Fluid Mechanics. McGraw-Hill, second edition edition, 1986.

6

